Azad Bonni, M.D., Ph.D.

Edison Professor and Chair
Neuroscience

Neurosciences Program
Developmental, Regenerative and Stem Cell Biology Program
Molecular Cell Biology Program
Biochemistry, Biophysics, and Structural Biology Program

  • 314-362-3033

  • 8108

  • 8th Floor McDonnell Science Building

  • bonni@wustl.edu

  • www.bonnilab.org

  • neuronal connectivity, ubiquitin signaling, transcriptional and epigenetic mechanisms, brain development, intellectual disability, autism spectrum disorders

  • Regulation of neuronal connectivity in brain development and disease

Research Abstract:

The major goal of research in the Bonni laboratory is to identify key mechanisms and principles that govern the establishment of neuronal connectivity in the brain. We are also interested in how deregulation of these mechanisms contributes to the pathogenesis of neurological and psychiatric diseases. The morphogenesis and differentiation of axons, dendrites, and synapses represent critical events that orchestrate neuronal connectivity in the brain. To elucidate the molecular basis of these fundamental developmental events in neurons, we are employing a combination of biochemical, molecular and cell biological, imaging, and genetic approaches in the rodent brain. 


During the past few years, we have discovered some of the first key cell-intrinsic transcriptional and ubiquitin pathways that regulate neuronal morphogenesis and synaptic connectivity in the mammalian brain. Our studies on the role of transcriptional mechanisms support the concept that different transcription factors are dedicated to distinct aspects of neuronal development, from axon specification and neuronal positioning to axon and dendrite growth and pruning to synapse differentiation. In early studies on the role ubiquitin signaling in neuronal development, we identified a key role for the ubiquitin ligase Cdh1-anaphase promoting complex (Cdh1-APC) in the control of axon growth and patterning (Konishi et al. Science 2004). Cdh1-APC operates in the nucleus of differentiating neurons to regulate transcriptional regulators and consequent programs of gene expression dedicated to axon morphogenesis. In more recent studies, we have identified novel functions for the related ubiquitin ligase Cdc20-APC in neuronal morphogenesis and connectivity. Remarkably, Cdc20-APC acts at the centrosome to promote the elaboration of dendrite arbors. We have also recently uncovered a specific role for the protein kinase CaMKII in the phosphorylation and consequent inhibition of Cdc20-APC at the centrosome, thereby triggering a switch from dendrite growth and elaboration to dendrite retraction and pruning in the brain. In other studies, we have discovered that Cdc20-APC drives the differentiation of presynaptic sites.


We are currently building on our discoveries to provide novel insights into the molecular underpinnings of brain development. In addition, we have a launched a new area of research in the laboratory at the interface of neurobiology with neurology and psychiatry, in which we aim to identify the molecular pathogenic mechanisms underlying autism spectrum disorders and mental retardation.

Selected Publications:

Yuan Z*, Becker E*, Merlo P, Yamada T, DiBacco S, Konishi Y, Schaefer E, Bonni A. Activation of FOXO1 by Cdk1 in cycling cells and postmitotic neurons. Science 2008 319:1665-8.


Kim AH, Puram SV, Bilimoria PM, Ikeuchi Y, Keough S, Wong M, Rowitch D, Bonni A. A Centrosomal Cdc20-APC pathway controls dendrite morphogenesis in postmitotic neurons. Cell 2009 136:322-36.


Yang Y, Kim AH, Yamada T, Wu B, Bilimoria P, Ikeuchi Y, de la Iglesia N, Shen J, Bonni A. A Cdc20-APC ubiquitin signaling pathway regulates presynaptic differentiation. Science. 2009 326:575-8.



Huynh MA, Ikeuchi Y, Netherton S, de la Torre-Ubieta L, Kanadia R, Stegmuller J, Cepko C, Bonni S, Bonni A. An isoform-specific SnoN1-FOXO1 transcriptional repressor complex regulates neuronal positioning in the mammalian brain. Neuron. 2011 69:930-44.



Puram SV, Kim AH, Ikeuchi Y, Wilson-Grady JT, Merdes A, Gygi SP, Bonni A. A CaMKIIbeta signaling pathway at the centrosome regulates dendrite patterning in the brain. Nature Neuroscience. 2011 14:973-83

Last Updated: 5/18/2012 2:42:04 PM

Back To Top

Follow us: