Gautam Dantas, Ph.D.

Associate Professor
Pathology and Immunology
Laboratory and Genomic Medicine

Molecular Microbiology and Microbial Pathogenesis Program
Molecular Genetics and Genomics Program
Computational and Systems Biology Program
Evolution, Ecology and Population Biology Program

  • 314-362-7238

  • 314-286-0867

  • 314-362-2156

  • 8510

  • Center for Genome Sciences and Systems Biology, 4515 McKinley Ave, 5th Floor, Rm 5314

  • dantas@WUSTL.EDU

  • http://dantaslab.wustl.edu/

  • https://twitter.com/volatilebug

  • anibiotic resistance, synthetic biology, bioenergy, human microbiome, metagenomics, microbial ecology and biodiversity

  • (1) Dynamics, ecology, and evolution of antibiotic resistance, (2) Engineering enhanced probiotics to treat GI disorders, (3) Engineering microbial biofuel catalysts

Research Abstract:

Our research group develops novel technologies to understand, harness, and engineer the biochemical processing potential of microbial communities. We work at the interface of microbial genomics, quantitative ecology, synthetic biology, systems biology, and computational biology to study problems with biotechnological and biomedical relevance. Our current projects are focused on three major themes: (1) understanding the evolution and exchange of antibiotic resistance amongst diverse microbial communities, (2) engineering improved probiotics to treat gastrointestinal disorders, and (3) engineering microbial catalysts to produce value chemicals such as biofuels.

Selected Publications:

Pehrsson EC*, Tsukayama P*, Patel S, Mejía-Bautista M, Sosa-Soto G, Navarrete KM, Calderon M, Cabrera L, Hoyos-Arango W, Bertoli MT, Berg DE, Gilman RH, Dantas G. Interconnected microbiomes and resistomes in low-income human habitats. Nature. 2016. doi: 10.1038/nature17672.

Gibson MK, Wang B, Ahmadi S, Burnham CAD, Tarr PI, Warner BB, Dantas G. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nature Microbiology. 2016. doi: 10.1038/nmicrobiol.2016.24.

Yoneda A*, Henson WR*, Goldner NK, Park KJ, Forsberg KJ, Kim SJ, Pesesky MW, Foston M, Dantas G, Moon TS. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630. Nucleic Acids Research. 2016. PMID: 26837573.

Gonzales PR, Pesesky MW, Bouley R, Ballard A, Biddy BA, Suckow MA, Wolter WR, Schroeder VA, Burnham CD, Mobashery S, Chang M, Dantas G. Synergistic, collaterally sensitive β-lactam combinations suppress resistance in MRSA. Nature Chemical Biology. 2015 Sep 14. doi: 10.1038/nchembio.1911. PMID: 26368589.

Pesesky MW*, Hussain T*, Wallace M, Wang B, Andleeb S, Burnham CAD, Dantas G. KPC and NDM-1 are harbored by related Enterobacteriaceae strains and plasmid backbones from distinct geographies. Emerging Infectious Diseases. 2015 Jun. doi: 10.3201/eid2106.141504.

Gibson MK, Forsberg KJ, Dantas G. Improved annotation of antibiotic resistance functions reveals microbial resistomes cluster by ecology. ISME J. 2014; doi: ISMEJ.2014.106. PMID: 25003965.

Forsberg KJ*, Patel S*, Gibson MK, Lauber CL, Knight R, Fierer N, Dantas G. Bacterial phylogeny structures soil resistomes across habitats. Nature 2014; 509: 612. doi: 10.1038/nature13377. PMID: 24847883. PMCID: PMC4079543.

Forsberg KJ*, Reyes A*, Wang B, Selleck EM, Sommer MO, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 2012 Aug 31;337(6098):1107-11. doi: 10.1126/science.1220761. PMID: 22936781. PMCID: PMC4070369.

Sommer MO*, Dantas G*, Church GM. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science. 2009 Aug 28;325(5944):1128-31. doi: 10.1126/science.1176950. PMID: 19713526.

Dantas G*, Sommer MO*, Oluwasegun RD, Church GM. Bacteria subsisting on antibiotics. Science. 2008 Apr 4;320(5872):100-3. doi: 10.1126/science.1155157. PMID: 18388292.

Kuhlman B*, Dantas G*, Ireton GC, Varani G, Stoddard BL, Baker D. Design of a novel globular protein fold with atomic-level accuracy. Science. 2003 Nov 21;302(5649):1364-8. PMID: 14631033.

Last Updated: 4/11/2017 4:18:29 PM

High-Throughput Functional Metagenomic Selections: Schematic representation of a culture-independent pipeline for identifying and quantifying selectable functions (e.g. antibiotic resistance) from any microbial genome or metagenome. Through a combination of recent experimental and computational innovations, the Dantas lab has decreased the cost of these methods by over 100-fold, enabling dramatic improvements in throughput for characterizing and modeling microbial community functions, dynamics, and ecology.
Back To Top

Follow us: